Aerojet Rocketdyne Begins Hot-Fire Tests In Support of US Air Force Hydrocarbon Boost Technology Demonstrator Program

SACRAMENTO, Calif., May 26, 2015 – Aerojet Rocketdyne (NYSE: AJRD) has completed the first in a series of hot-fire tests on the sub-scale oxygen rich pre-burner in support of the U.S. Air Force Hydrocarbon Boost Technology Demonstrator (HBTD) program.

In coming months, multiple injector configurations will be tested to evaluate the performance and stability parameters that are critical for a high-performance, high-reliability liquid oxygen/kerosene rocket engine. The sub-scale test series will be used to aid the design and development of the full-scale pre-burner and engine development. An oxygen-rich pre-burner is one of the enabling technologies of the Oxygen-Rich Staged Combustion (ORSC) cycle needed to provide high thrust-to-weight and performance regardless of hydrocarbon fuel type.

"Throughout the sub-scale fabrication and facility checkouts, we’ve documented a number of lessons learned that have directly influenced the full-scale pre-burner design. We are looking forward to what more we will learn during the hot-fire test series," said Joe Burnett, program manager of the Hydrocarbon Boost Technology Demonstrator program at Aerojet Rocketdyne.

Under program direction of the Air Force Research Laboratory (AFRL), Aerojet Rocketdyne is designing, developing and testing the HBTD engine. Its technologies are directed at achieving the goals of the Rocket Propulsion for the 21st Century (RP21) program, formally known as Integrated High Payoff Rocket Propulsion Technology, or IHPRPT.

Designed to generate 250,000 pounds of thrust, the engine technology uses liquid oxygen and liquid kerosene (RP-2) in the first U.S.-developed demonstration of the ORSC cycle. It has been designed as a re-usable engine system, capable of powering up to 100 flights, and features high-performance long-life technologies and modern materials.

Burn-resistant, high-strength alloys manufactured using novel technologies will be used throughout the engine. Manufacturing parameters of some of the alloys have been developed under a joint effort with the Air Force, known as the Metals Affordability Initiative or MAI. These advanced technologies will be matured sufficiently throughout the program to support the next generation of expendable launch system development efforts. It also will help in the rapid turn-around usability for future re-usable launch systems. The data from this test effort will be used by other Air Force development programs such as the Advanced Liquid Rocket Engine Stability Tools program (ALREST) to further advance the state-of-the-art capabilities in combustion stability modeling.

Previously, Aerojet Rocketdyne designed and supplied the oxygen-rich and fuel-rich pre-burners for the Air Force’s Integrated Powerhead Device (IPD) demonstration engine, the world’s first full-flow staged combustion rocket engine. The design lessons learned and test approach from the IPD pre-burners have been leveraged for the HBTD pre-burner architecture.

Aerojet Rocketdyne is a diversified company delivering innovative solutions that create value for its customers in the aerospace and defense, and real estate markets. The company is a world-recognized aerospace and defense leader that provides propulsion and energetics to the space, missile defense and strategic systems, tactical systems and armaments areas, in support of domestic and international markets. Additional information about Aerojet Rocketdyne can be obtained by visiting our websites at www.Rocket.com and www.AerojetRocketdyne.com.